3,861 | 19 | 197 |
下载次数 | 被引频次 | 阅读次数 |
利用电磁波传递能量和信息一直是备受人们关注和重视的研究课题,因为它在通讯、能源、环境、医药等多应用领域中都扮演重要的角色。近年来,随着微纳米制造技术的进步,超材料的出现为解决传统电磁技术的瓶颈问题(如光路体积大、结构复杂、功能单一等问题)提供了新思路和新机会。得益于超强的电磁场调控能力,这些材料不仅能够实现传统光学元件的诸多功能,而且还能实现很多自然界不存在的、奇异的电磁响应和特性。本文将结合作者近年来的研究工作,对超材料的研究进展和发展趋势进行综述,主要思路是根据调控的电磁波自由度对超材料进行分类和阐述。最后作者还将介绍基于相变材料的主动调控超材料。
Abstract:Usage of electromagnetic waves for transmitting energy and information has always been a research topic of great concern and interest, owing to their important role in many application fields, such as communication,energy, environment, medicine and so on. In recent years, with the development of micro/nano-fabrication technology, metamaterials have emerged and provided new ideas and opportunities to solve the bottleneck problems of traditional electromagnetic technology, such as large volume of optical-paths, complex structure, single function etc.Thanks to the strong ability to control electromagnetic waves, these materials can not only enable various functions of traditional optical elements, but also bring out some novel electromagnetic responses that do not exist in nature.Herein, the recent advances in metamaterials are briefly reviewed and classified from the viewpoint of the degrees of freedom of electromagnetic waves. At last, we will discuss something about active metamaterials based on phase transition materials.
[1]U.Hail C,U.Michel A,Poulikakos D,et al.Optical Metasurfaces:Evolving from Passive to Adaptive[J].Adv.Optical Mater.2019,(7):1801786
[2]Pendry J B,Schurig D,Smith D R.Controlling Electromagnetic Fields[J].Science 2006,(312):1780-1782
[3]Kildishev A V,Boltasseva A,Shalaev V M.Planar Photonics with Metasurfaces[J].Science,2013,(339):1232009
[4]Ni X,Wong Z J,Mrejen M,et al.An Ultrathin Invisibility Skin Cloak for Visible Light[J].Science,2015,(349):1310-1314
[5]Valentine J,Zhang S,Zentgraf T,et al.Three-Dimensional Optical Metamaterial with a Negative Refractive Index[J].Nature,2008,(455):376-379
[6]Landy N I,Sajuyigbe S,Mock J J,et al.Perfect Metamaterial Absorber[J].Phys Rev Lett,2008,(100):207402.
[7]Khorasaninejad M,Capasso F.Metalenses:Versatile Multifunctional Photonic Components[J].Science,2017,(358):eaam8100
[8]Li S Q,Xu X,Veetil R M,et al.Phase-only Transmissive Spatial Light Modulator Based on Tunable Dielectric Metasurface[J].Science,2019,(364):1087-1090
[9]Wang D,Wang W,Knudson M P,et al.Structural Engineering in Plasmon Nanolasers[J].Chem Rev,2018,(118):2865-2881
[10]Ni X,Kildishev A V,Shalaev V M.Metasurface Holograms for Visible Light[J].Nat Commun,2013,(4):2807
[11]Luo S,Cui T J.Concepts,Working Principles,and Applications of Coding and Programmable Metamaterials[J].Adv Optical Mater,2017,(5):1700624
[12]Ahmed H,Kim H,Zhang Y,et al.Optical Metasurfaces for Generating and Manipulating Optical Vortex Beams[J].Nanophotonics,2022,(11):941-956
[13]Veselago V G.The Electrodynamics of Substances with Simultaneously Negative Values of ε andμ[J].Soviet physics uspekhi,1968,(10):509-514
[14]Pendry J B,Holden A J,Stewart W J,et al.Extremely Low Frequency Plasmons in Metallic Mesostructures[J].Phys Rev Lett,1996,(76):4773-4776
[15]Porto J A,García-Vidal F J,Pendry J B.Transmission Resonances on Metallic Gratings with Very Narrow[J].Phys Rev Lett,1999,(83):2845-2848
[16]Smith D R,Padilla W J,Vier D C,et al.Composite medium with Simultaneously Negative Permeability and Permittivity[J].Phys Rev Lett,2000,(84):4184-4197
[17]Shelby R A,Smith D R,Schultz S,Experimental Verification of a Negative Index of Refraction[J].Science,2001,(292):77-79
[18]Pendry J B,Schurig D,Smith D R,Controlling Electromagnetic Fields[J].Science,2006,(312):1780-1782.
[19]Schurig D,Mock J J,Justice B J,et al.Metamaterial Electromagnetic Cloak at Microwave Frequencies[J].Science,2006,(314):977-980
[20]Yu N,Genevet P,Kats M A,et al.Light Propagation with Phase Discontinuities:Generalized Laws of Reflection and Refraction[J].Science,2011,(334):333-337.
[21]Pfeiffer C,Grbic A.Metamaterial Huygens’Surfaces:Tailoring Wave Fronts with Reflectionless Sheets[J].Phys Rev Lett,2013,(110):197401.
[22]Tao H,Landy N I,Bingham C M,et al.A Metamaterial Absorber for the Terahertz Regime:Design,Fabrication and Characterization[J].Opt Express,2008,(16):7181-7188
[23]Liu N,Mesch M,Weiss T,M.et al.Infrared Perfect Absorber and Its Application as Plasmonic Sensor[J].Nano Lett,2010,(10):2342-2348
[24]Wen Q Y,Zhang H W,Xie Y Set al.Dual Band Terahertz Metamaterial Absorber:Design,Fabrication,and Characterization[J].Appl Phys Lett,2009,(95):241111
[25]Glybovski S B,Tretyakov S A,Belov P A,et al.Metasurfaces:From Microwaves to Visible[J].Phys Rep 2016,(634):1-72
[26]Ding F,Cui Y,Ge X,et al.Ultra-Broadband Microwave Metamaterial Absorber[J].Appl Phys Lett,2012,(100):103506
[27]Cui Y,Fung K H,Xu J,et al.Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab[J].Nano Lett,2012,(12):1443-1447
[28]Hu S,Yang Sh,Liu Z,et al.Broadband and PolarizationInsensitive Absorption Based on a Set of Multisized Fabry-Perot-Like Resonators[J].J Phys Chem C,2019,(123):13856-13862
[29]Boiler K J,Imamoglu A,Harris S E.Observation of Electromagnetically Induced Transparency[J].Phys Rev Lett,1991,(66):2593-2596
[30]Zhang S,Genov D A,Wang Y,Plasmon-Induced Transparency in Metamaterials[J].Phys Rev Lett,2008,(101):047401
[31]Zhu L,Dong L.Electromagnetically Induced Transparency Metamaterials:Theories,Designs and Applications[J].J Phys D:Appl Phys,2022,(55):263003
[32]Niu X,Hu X,Yan Q,et al.Plasmon-Induced Transparency Effect for Ultracompact On-Chip Devices[J].Nanophotonics,2019,(8):1125-1149
[33]Wu J,Jin B,Wan J,et al.Superconducting Terahertz Metamaterials Mimicking Electromagnetically Induced Transparency[J].Appl Phys Lett,2011,(99):161113
[34]Zhu Z,Yang X,Gu J,et al.Broadband Plasmon Induced Transparency in Terahertz Metamaterials[J].Nanotechnology,2013,(24):214003
[35]Yang S,Xia X,Liu Z,et al.Multispectral Plasmon-Induced Transparency in Hyperfine Terahertz Meta-Molecules[J].J Phys:Condens Matter,2016,(28):445002
[36]Khorasaninejad M,Capasso F.Metalenses:Versatile Multifunctional Photonic Components[J].Science,2017,(358):eaam8100
[37]Aieta F,Kats M A,Genevet P,et al.Multiwavelength aA-chromatic Metasurfaces by Dispersive Phase Compensation[J].Science,2015,(347):1342-1345
[38]Khorasaninejad M,Zhu A Y,Roques-Carmes C,et al.Polarization-Insensitive Metalenses at Visible Wavelengths[J].Nano Lett,2016,(16):7229-7234
[39]Jisha C P,Nolte S,Alberucci A.Geometric Phase in Optics:From Wavefront Manipulation to Waveguiding[J].Laser Photonics Rev,2021,(15):2100003
[40]Chen H-T,Taylor A J,Yu N.A Review of Metasurfaces:Physics and Applications[J].Rep Prog Phys,2016,(79):076401
[41]Walther B,Helgert C,Rockstuhl C,et al.Spatial and Spectral Light Shaping with Metamaterials[J].Adv Mater,2012,(24):6300-6304
[42]Zheng G,Mühlenbernd H,Kenney M,et al.Metasurface Holograms Reaching 80%efficiency[J].Nat Nanotechnol,2015,(10):308-312
[43]Valev V K,Baumberg J J,Sibilia C,et al.Chirality and Chiroptical Effects in Plasmonic Nanostructures:Fundamentals,Recent Progress,and Outlook[J].Adv Mater,2013,(25):2517-2534
[44]Collins J T,Kuppe C,Hooper D C,Chirality and Chiroptical Effects in Metal Nanostructures:Fundamentals and Current Trends[J].Adv Optical Mater,2017,(5):1700182
[45]Yang S,Liu Z,Hu S,et al.Spin-Selective Transmission in Chiral Folded Metasurfaces[J].Nano Lett,2019,(19):3432-3439
[46]Intaravanne Y,Chen X.Recent Advances in Optical Metasurfaces for Polarization Detection and Engineered Polarization Profiles[J].Nanophotonics,2020,(9):1003-1014
[47]Deng Y,Cai Z,Ding Y,et al.Recent Progress in Metasurface-Enabled Optical Waveplates[J].Nanophotonics,2022 (11):2219-2244
[48]Cui T J,Qi M Q,Wan X,et al.Coding Metamaterials,Digital Metamaterials and Programmable Metamaterials[J].Light:science&applications,2014,(3):e218
[49]Hu S,Du S,Li J,et al.Multidimensional Image and Beam Splitter Based on Hyperbolic Metamaterials[J].Nano Lett,2021,(21):1792-1799
[50]Du S,Liu Z,Sun C,et al.Cross-Nanofin-Based Waveplate Pixels for Broadband Hybrid Polarization Coding in Near Field[J].Nanophotonics,2021,(10):1505-1515
[51]Xiao S,Wang T,Liu T,et al.Active Metamaterials and Metadevices:a Review[J].J Phys D:Appl Phys,2020,(53):503002
[52]Yang J,Gurung S,Bej S,et al.Active Optical Metasurfaces:Comprehensive Review on Physics,Mechanisms,and Prospective Applications[J].Rep Prog Phys,2022,(85):036101
[53]Tao H,Strikwerda A C,Fan KI,et al.ReconFig...urable Terahertz Metamaterials[J].Phys Rev Lett,2009,(103):147401
[54]Huang Y-W,Lee H W H,Sokhoyan R,et al,Gate-Tunable Conducting Oxide Metasurfaces[J].Nano Lett,2016,(16):5319-5325
[55]Zhao Q,Kang L,Du B,et al.Electrically Tunable Negative Permeability Metamaterials Based on Nematic Liquid Crystals[J].Appl Phys Lett,2007,(90):011112
[56]Li C,Zhu W,Liu Z,et al.Tunable Near-Infrared Perfect Absorber Based on the Hybridization of Phase-Change Material and Nanocross-Shaped Resonators[J].Appl Phys Lett,2018,(113):231103
[57]Kim M,Jacob Z,Rho J,Recent Advances in 2D,3D and Higher-Order Topological Photonics[J].Light:Science&Applications 2020,(9):130
[58]Hsu C W,Zhen B,Stone A D,et al.Bound States in the Continuum[J].Nat Rev Mater,2016,(1):1-13
[59]?zdemir?K,Rotter S,Nori F,et al.Parity-Time Symmetry and Exceptional Points in Photonics[J].Nat Mater,2019,(18):783-798
[60]Feng L,El-Ganainy R,Ge L.Non-Hermitian Photonics Based on Parity-Time Symmetry[J].Nat Photonics,2017,(17):752-762
基本信息:
DOI:10.13922/j.cnki.cjvst.202207004
中图分类号:TB34
引用信息:
[1]郭阳,杜硕,胡莎等.电磁超材料研究进展及应用现状[J].真空科学与技术学报,2022,42(09):641-653.DOI:10.13922/j.cnki.cjvst.202207004.
基金信息: