28 | 0 | 10 |
下载次数 | 被引频次 | 阅读次数 |
文章以超导加速模组水平测试平台的束流真空泵站为研究对象,开展结构仿真分析和多目标优化设计,以满足其安全性和轻量化要求。首先,基于静力学仿真和子模型技术,分析真空泵站的强度和刚度并提出优化方案。随后,通过中心复合设计(CCD)方法和参数化仿真获得试验样本空间,建立克里金(Kriging)代理模型并进行响应面分析。最后,采用多目标遗传算法(MOGA)求得帕累托(Pareto)最优解,并对优选方案进行仿真验证。结果表明:优化后的真空泵站其最大等效应力为76.116 MPa,最大变形量为0.47151 mm,而泵站质量相比优化前仅增加了0.25%,优化结果满足多目标优化的设计要求,证明了所述多目标优化方法的可行性。研究内容可为加速器领域真空腔体的设计优化提供参考。
Abstract:In this paper, the beam vacuum pump station of the horizontal test platform of superconducting acceleration cryomodule is taken as the research object, structural simulation analysis and multi-objective optimization design are conducted to meet its requirements for safety and lightweight. Firstly, based on statics simulation and sub-model technology, the strength and stiffness of the vacuum pump station are analyzed and an optimization scheme is proposed. Subsequently, the test sample space is obtained through the central composite design(CCD) method and parametric simulation, and the response surface analysis is conducted through the Kriging surrogate model. Finally, the multi-objective genetic algorithm(MOGA) is adopted to obtain the Pareto optimal solution, and the preferred scheme is simulated and verified. The results show that the maximum equivalent stress of the optimized vacuum pump station is 76.116 MPa, the maximum deformation is 0.47151 mm, and the mass of the pump station only increased by 0.25% compared with that before optimization. The optimization results meet the design requirements of multi-objective optimization, which proves the feasibility of the said multi-objective optimization method. This research can provide references for the design and optimization of vacuum chambers in the field of accelerators.
[1]Liu Z, Wan W S, Wang D. Development of large-scale user facilities for photon science in China[J]. Chinese Journal of Nature,2024,46(3):161-172(刘志,万唯实,王东.中国光子大科学装置的发展[J].自然杂志,2024,46(3):161-172(in Chinese))
[2]Dong R C, Feng J Z, Wang X C, et al. Atomic, molecular and cluster applications of short-wavelength free-electron lasers[J]. Chinese Journal of Nature, 2024, 46(3):203-220(董瑞超,冯金泽,王新成,等.短波自由电子激光在原子分子和团簇中的应用[J].自然杂志,2024,46(3):203-220(in Chinese))
[3]Zhang H, Huang L M, Zhao F, et al. Design and thermal structure analysis of a dump beam window for high repetition frequency[J]. High Power Laser and Particle Beams,2023,35(3):88-93(张浩,黄礼明,赵峰,等.一种高重频废束桶束窗的设计及热结构分析[J].强激光与粒子束,2023,35(3):88-93(in Chinese))
[4]Zhen T T, Deng R B, Gao F, et al. Finite element analysis and measurement of vibration responses of cryomodule 1.3 GHz superconducting accelerator[J]. Nuclear Techniques,2022,45(1):24-30(甄亭亭,邓荣兵,高飞,等. 1.3 GHz超导加速模组振动响应有限元分析及测试[J].核技术,2022,45(1):24-30(in Chinese))
[5]Liu K X, Hao J K, Quan S W, et al. SRF accelerating technology applied in light sources[J]. High Power Laser and Particle Beams,2022,34(10):134-142(刘克新,郝建奎,全胜文,等.应用于光源的射频超导加速技术[J].强激光与粒子束,2022,34(10):134-142(in Chinese))
[6]Mi Z H, Sha P, Sun Y, et al. Operation of domestic 500MHz superconducting cavity for BEPCⅡ[J]. High Power Laser and Particle Beams,2018,30(8):143-147(米正辉,沙鹏,孙毅,等. BEPCⅡ国产500 MHz超导腔运行综述[J].强激光与粒子束,2018,30(8):143-147(in Chinese))
[7]Pu X Y, Hou H T, Ma Z Y, et al. Horizontal test of 500MHz superconducting cavity for SSRF[J]. High Power Laser and Particle Beams,2019,31(11):121-126(蒲小云,侯洪涛,马震宇,等.上海光源500MHz超导腔水平测试[J].强激光与粒子束,2019,31(11):121-126(in Chinese))
[8]Li H, Jobs M, Kern R S, et al. Characterization of a β=0.5double spoke cavity with a fixed power coupler[J]. Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment,2019,927:63-69
[9]Li H, Dai J P, Sha P, et al. Development of a 325 MHz β=0.12 superconducting single spoke cavity for ChinaADS[J]. Chinese Physics C,2014,38(7):077008
[10]Gonnella D, Eichhorn R, Furuta F, et al. Nitrogen-doped9-cell cavity performance in a test cryomodule for LCLS-Ⅱ[J]. Journal of Applied Physics,2015,117(2):935-937
[11]Harms E, Hocker A. Performance of 3.9 GHz SRF cavities at Fermilab's ILCTA_MDB horizontal test stand[J].IEEE Transactions on Applied Superconductivity, 2009,19(3):1412-1415
[12]Liu B Q, Peng X H, Zhai J Y, et al. Development and testing of vacuum system for 1.3 GHz 9-Cell superconducting accelerator module[J]. Chinese Journal of Vacuum Science and Technology,2016,36(5):538-541(刘佰奇,彭晓华,翟纪元,等. 1.3 GHz 9-cell超导腔加速组元的真空系统[J].真空科学与技术学报,2016,36(5):538-541(in Chinese))
[13]Yue T, He C F, Wang X L, et al. Simulation analysis of ultimate vacuum scheme for coupler warm windows[J].Vacuum(China),2024,61(4):52-57(岳泰,何超峰,王希龙,等.耦合器热窗的极限真空方案模拟分析[J].真空,2024,61(4):52-57(in Chinese))
[14]Li P X, Yang T, Yang R J, et al. Design and thermal analysis of a high-power Faraday cup for CSNS-Ⅱ[J]. Mechanical and Electrical Engineering Technology, 2023,52(4):85-89(李鹏馨,杨涛,杨仁俊,等. CSNS-Ⅱ高功率法拉第筒设计与热分析[J].机电工程技术,2023,52(4):85-89(in Chinese))
[15]Zhu X X, Tan W B, Su Z F, et al. Using Faraday cup for measurement of intense pulsed electric beams[J]. Journal of Terahertz Science and Electronic Information Technology,2019,17(3):536-540(朱晓欣,谭维兵,苏兆峰,等.利用法拉第筒测试环形强流电子束束流[J].太赫兹科学与电子信息学报,2019,17(3):536-540(in Chinese))
[16]Xu K P, Hui H, Gong J G. Nonlinear numerical simulation of the strain-strengthening vacuum insulated vessel[J].Chemical Engineering(China),2016,44(9):70-74(徐鹍鹏,惠虎,宫建国.应变强化型真空绝热容器的非线性数值模拟[J].化学工程,2016,44(9):70-74(in Chinese))
[17]He S D, Wang H X, Liu B R, et al. Structural stability analysis and test evaluation for large vacuum vessel[J].Chinese Journal of Vacuum Science and Technology,2023,43(5):410-417(何绍栋,王华新,刘宝瑞,等.某大型真空容器结构稳定性分析与试验评价[J].真空科学与技术学报,2023,43(5):410-417(in Chinese))
[18]Wang L, Ren X F. Structural strength analysis for an alien vacuum shell[J]. Machinery Design and Manufacture,2011(8):191-193(王亮,任晓芳.异形真空室壳体的结构强度分析[J].机械设计与制造,2011(8):191-193(in Chinese))
[19]Cui Z W, Xie Y L, Gu Y M, et al. Structural design and optimization of vacuum vessel for negative ion source test facility[J]. Chinese Journal of Vacuum Science and Technology,2023,43(3):231-237(崔志伟,谢远来,顾玉明,等.负离子源测试平台真空室结构设计及优化[J].真空科学与技术学报,2023,43(3):231-237(in Chinese))
[20]Wan G H, Wang Q L, Wu M P, et al. Dynamic analysis and response surface optimization of pipe winch barrel[J].Mechanical Science and Technology for Aerospace Engineering,2023,42(10):1592-1601(万光海,王全龙,武美萍,等.管绞车筒体动力学分析及响应面优化研究[J].机械科学与技术,2023,42(10):1592-1601(in Chinese))
[21]Wei T, Li M, Huang H, et al. Bus rear high floor skeleton design based on response surface optimization[J]. Machine Design and Research,2022,38(1):161-167(韦韬,李明,黄洪,等.基于响应面优化的客车后高地板骨架设计[J].机械设计与研究,2022,38(1):161-167(in Chinese))
[22]Huang K, Wen Y P, Zhou X Z. Multi-objective optimization of high-speed gear shaft using response surface method[J]. Mechanical Science and Technology for Aerospace Engineering,2023,42(7):1129-1139(黄柯,文永蓬,周贤周.利用响应面法的高速齿轮轴多目标优化方法[J].机械科学与技术,2023,42(7):1129-1139(in Chinese))
[23]Ling J X, Li H Y, Wang Q T, et al. Structural optimization and lightweighting of tyre forming machine rolling support[J]. Modern Manufacturing Engineering,2023(10):126-134(凌静秀,李浩宇,王乾廷,等.基于Kriging模型和MOGA的轮胎成型机辊压支架的轻量化研究[J].现代制造工程,2023(10):126-134(in Chinese))
[24]Chen G X, Cao Y, Wu J X, et al. Welding platform gantry structure lightweight design[J]. Machinery Design and Manufacture,2024(4):194-199(陈国雄,曹阳,吴家雄,等.焊接平台龙门架结构轻量化设计[J].机械设计与制造,2024(4):194-199(in Chinese))
[25]Li Y T, Lian H Q. Bionic multi-objective optimization design of BFPC column structure[J]. Modern Manufacturing Engineering,2024(12):87-93+107(李有堂,连虎强.BFPC立柱结构仿生多目标优化设计[J].现代制造工程,2024(12):87-93+107(in Chinese))
[26]Liu L F, Feng X Y, Li P G, et al. Multi-objective optimization of tire dynamic balancing machine spindle based on response surface method[J]. Manufacturing Technology and Machine Tool,2025(2):171-176+193(刘立富,冯显英,李沛刚,等.基于响应面法的轮胎动平衡机主轴多目标优化[J].制造技术与机床,2025(2):171-176+193(in Chinese))
[27]Li C, Xu K, Pang N, et al. Parameter optimization of marine steel pile removal equipment’s surrounding structure[J]. Journal of Machine Design, 2025, 42(3):150-156(李超,徐凯,庞楠,等.海洋钢桩清除机具环抱结构参数优化[J].机械设计,2025,42(3):150-156(in Chinese))
[28]Luo J A, Zhou X Y. Study on stress singularity in finite element analysis[J]. Journal of Langfang Normal University(Natural Science Edition), 2021, 21(4):42-45+50(罗吉安,周星越.有限单元法分析中应力奇异问题的研究[J].廊坊师范学院学报(自然科学版),2021,21(4):42-45+50(in Chinese))
[29]Liu S Y, Huang C Y. Research on stress singularity problems of finite element analysis based on SolidWorks simulation[J]. Modern Manufacturing Technology and Equipment, 2020(6):69-72(刘三勇,黄才英. SolidWorks Simulation有限元分析中应力奇异问题的研究[J].现代制造技术与装备,2020(6):69-72(in Chinese))
[30]Wang X, Qi Q S. Research on stress singularity of finite element analysis[J]. Mechanical Engineering and Automation,2014(3):61-63(王鑫,戚其松.有限元分析中应力奇异问题的处理[J].机械工程与自动化,2014(3):61-63(in Chinese))
[31]State Administration for Market Regulation, National Standardization Administration. GB/T 20801.2-2020 Pressure piping code-Industrial piping-Part 2:Materials[S].Beijing:Standards Press of China, 2020(国家市场监督管理总局,国家标准化管理委员会. GB/T 20801.2-2020压力管道规范工业管道第2部分:材料[S].北京:中国标准出版社, 2020(in Chinese))
[32]Zhou L D, Jiang N. Allowable stress and strain of strain hardening of cryogenic vessels of S30408 austenitic stainless steels[J]. Pressure Vessel Technology, 2011, 28(2):5-10(周连东,江楠.国产S30408奥氏体不锈钢应变强化低温容器许用应力及应变确定[J].压力容器,2011,28(2):5-10(in Chinese))
[33]Zheng B, Wang N N. Application of guiding cantilever method in design of piping flexibility and supports[J].Process Equipment and Piping, 2021, 58(4):75-79(郑彬,汪妮妮.导向悬臂法在管道柔性和支架设计中的应用[J].化工设备与管道,2021,58(4):75-79(in Chinese))
[34]Song S Y, Yin F. Sain Vaint principle of meshing in finite elememt method and its application[J]. Machinery Design and Manufacture,2012(8):63-65(宋少云,尹芳.有限元网格划分中的圣维南原理及其应用[J].机械设计与制造,2012(8):63-65(in Chinese))
[35]Gao Y H, Dong J H, Gao B J. Application of sub-model technique in stress analysis and structure optimization of the supporting region of large spherical tank[J]. Journal of Mechanical Strength,2010,32(5):735-739(高艳红,董俊华,高炳军.子模型技术在大型球罐支撑区应力分析及结构优化中的应用[J].机械强度,2010, 32(5):735-739(in Chinese))
[36]Gao B J, Gao Y H, Li J H. Application of sub-model technique in stress analysis of spherical tank[J]. Pressure Vessel Technology,2009,26(5):27-31(高炳军,高艳红,李金红.子模型法在球罐应力分析中的应用[J].压力容器,2009,26(5):27-31(in Chinese))
基本信息:
DOI:10.13922/j.cnki.cjvst.202412011
中图分类号:TB752
引用信息:
[1]赵凡,李菡,尉伟等.超导加速模组水平测试平台真空泵站结构分析与优化[J].真空科学与技术学报,2025,45(07):550-560.DOI:10.13922/j.cnki.cjvst.202412011.
基金信息: