183 | 1 | 37 |
下载次数 | 被引频次 | 阅读次数 |
加热体是真空烧结炉的核心部件,其几何截面形状直接影响真空烧结炉内温度分布,而炉温均匀性是衡量烧结炉性能的关键指标。文章用有限元方法研究了圆形、圆环形、菱形、正方形、半圆形、矩形及其不同组合截面等12种加热体形状对真空烧结炉温度分布规律的影响。通过加热体与工件微元面间的几何关系构建烧结炉内传热模型,研究了不同截面形状加热体的辐射特性。结果表明空载条件下,矩形和圆形组合的截面形状加热体烧结炉内均温区面积最大,而矩形加热体炉内均温区面积最小,二者相比相差16%。而负载状态下,菱形截面加热体烧结炉相较于菱形和圆形组合截面烧结炉内工件最大温差降低了30.18℃,炉温均匀性提高了23%。研究可为真空烧结炉加热体结构设计与优化提供理论参考。
Abstract:As the core component of a vacuum sintering furnace, the geometric cross-section shape of heating elements directly affects the furnace temperature distribution, while temperature uniformity is a crucial index for evaluating the furnace's performance. This paper investigates the influence of twelve types of heating elements,including circular ring, circular, diamond, square, semicircular, rectangular, and different combinations of these shapes, on the temperature distribution using the finite element method. Combined with the geometric relationship between the heating body and the micro-element surface of the workpieces, a heat transfer model is established to study the radiation characteristics of the elements with different cross-section shapes. The results show that, under no-load conditions, the size of the temperature uniformity zone is the largest in the furnace with rectangular/circular combined cross-section elements, whereas the furnace with rectangular-section ones exhibits the smallest, with a difference of 16%. Compared with the circular combined-shaped furnace, the maximum temperature difference of the workpieces in the diamond-shaped one is reduced by 30.18℃, while the furnace temperature uniformity is increased by 23%. Our work may provide a theoretical basis and technical reference for optimizing the heater design of a vacuum sintering furnace.
[1]Cheng J P,Zhang H M.Development of high-temperature vacuum brazing equipment[J].Electronics Process Technology,2010,31(1):48-50(程建平,张红梅.高温真空钎焊设备的研制[J].电子工艺技术,2010,31(1):48-50 (in Chinese))
[2]Pritchard J.Hot-zone design for vacuum furnaces[J].Industrial Heating,2007,74(9):95-99
[3]Peng P.Design of large aluminum vacuum brazing furnace-major specifications and heating control program[J].Chinese Journal of Vacuum Science and Technology,2004(6):75-80(彭平.大型真空铝钎焊装备-主要技术参数及热工程序设计与控制[J].真空科学与技术学报,2004(6):75-80 (in Chinese))
[4]Zhou H J,Chen X M,Yang B,et al.Simulation of transient temperature field in vacuum alumina carbothermic reduction[J].Chinese Journal of Vacuum Science and Technology,2012,32(10):896-901(周厚军,陈秀敏,杨斌,等.氧化铝真空碳热还原炉瞬态温度场模拟计算[J].真空科学与技术学报,2012,32(10):896-901 (in Chinese))
[5]Liu M J,Zhao X S.Numerical simulation of measurement of temperature uniformity in vacuum furnace[J].Metrology&Measurement Technology,2021,41(3):20-24(刘明君,赵学师.真空炉温度均匀性测量的数值模拟研究[J].计测技术,2021,41(3):20-24 (in Chinese))
[6]Hao X W,Gu J F,Chen N,et al.3-D numerical analysis on heating process of loads within vacuum heat treatment furnace[J].Applied Thermal Engineering,2008,28(14-15):1925-1931
[7]Wang H J.Study on high temperature vacuum furnace temperature uniformity test in AMS2750 standard based on[J].Equipment for Electronic Products Manufacturing,2015,44(5):37-41(王宏杰.基于AMS2750标准中高温真空炉温均匀性测试的研究[J].电子工业专用设备,2015,44(5):37-41 (in Chinese))
[8]Yi G.Homogeneity of temperature in vacuum heat treatment equipment[J].Journal of Materials Engineering,1997(4):14-17(易光.真空处理炉炉温均匀性探讨[J].材料工程,1997(4):14-17 (in Chinese))
[9]Chen Z W,Gao G W,Yu D J,et al.Resistivity measurement of irregularly-shaped graphite heater:A Simulation and Experimental Study[J].Chinese Journal of Vacuum Science and Technology,2018,38(9):810-816(空陈正伟,高光伟,于德军,等.基于有限元仿真分析的常用石墨材料电阻率测量方法及设备设计[J].真空科学与技术学报,2018,38(9):810-816 (in Chinese))
[10]Shi F,Chen J,Cheng H C,et al.Numerical simulation of temperature field distribution on sapphire substrate in GaN growth reactor[J].Chinese Journal of Vacuum Science and Technology,2016,36(6):723-726(石峰,陈靖,程宏昌,等.真空系统内一种加热器温度场分布有限元分析[J].真空科学与技术学报,2016,36(6):723-726(in Chinese))
[11]Xing L D,Xiao W,Bao Y P,et al.Physical modeling study for process optimization of 300-ton RH vacuum refining furnace[J].Journal of Sustainable Metallurgy,2024,10(1):386-396
[12]Wang C P.Obtaining high-temperature thermal conductivity of graphite fiber material simulation of temperature field in vacuum sintering furnace[D].Shandong University,2020(王翠平.石墨纤维材料高温导热系数获取及真空烧结炉温度场模拟[D].山东大学,2020 (in Chinese))
[13]Liu J,Li J D,Wang H J,et al.Numerical simulation to optimize heating system in vacuum carburizing furnace[J].Journal of Northeastern University(Natural Science),2019,40(5):641-646(刘静,李家栋,王昊杰,等.真空渗碳炉加热系统结构优化数值模拟研究[J].东北大学学报(自然科学版),2019,40(5):641-646 (in Chinese))
[14]Xiong L,Zhang D C,Song S C,et al.Numerical simulation and system optimization of temperature field in silicon carbide vacuum sintering furnace[J].Heat Treatment of Metals,2022,47(6):259-265(熊梨,张登春,宋石初,等.碳化硅真空烧结炉温度场数值模拟与系统优化[J].金属热处理,2022,47(6):259-265 (in Chinese))
[15]Yang S,Zhou L,Liu Y,et al.Simulation analysis of temperature field of sintered NdFeB vacuum sintering furnace based on Fluent[J].Metallic Functional Materials,2023,30(5):38-42(杨松,周磊,刘洋,等.基于Fluent烧结钕铁硼真空烧结炉温度场模拟分析[J].金属功能材料,2023,30(5):38-42 (in Chinese))
[16]Xie Y Q.Vacuum annealing temperature tontrol structure design of furnace and thermal field simulation[D].Xidian University,2016(解永强.高温真空炉用金属加热元件的防变形设计[D].西安电子科技大学,2016(in Chinese))
[17]Sany X Y,Yuan Z H,Yu X J,et al.Research on the temperature uniformity of vacuum furnace and size optimization of working zone[J].International Conference on Intelligent Computation Technology and Automation,2016,789-792
[18]Zhang X P.Research on thermal field and structural parameters optimization of vacuum sintering furnace based on modeling and simulation[D].Guangdong University of Technology,2020(张啸鹏.基于建模仿真的真空烧结炉温度场研究与结构参数优化[D].广东工业大学,2020(in Chinese))
[19]Wu B X,Xu M G,Zhang J,et al.Optimized design of vacuum pyrolysis furnace with multiple homogenization temperatures[J].Chinese Journal of Vacuum Science and Technology,2023,43(9):754-761(武炳鑫,许鸣皋,张俊,等.真空高温热解炉多均匀化温度优化设计[J].真空科学与技术学报,2023,43(9):754-761(in Chinese))
[20]Wang Y F,Liu Z.Development of numerical modeling and temperature controller optimization for internal heating vacuum furnace[J].IEEE Access,2021,122343-122352
[21]Jia J Y,Zhen X L,Chen X T,et al.Imitation analysis of cremation furnace heat transfer under the finite element simulation software[J].Thermal Science,2020,24(5):3357-3365
[22]Zhou X Y,Zhao C L,Huang C S,et al.Effect of annealing temperature on properties of shape-memory Ti-51Ni alloy:An Experimental Study[J].Chinese Journal of Vacuum Science and Technology,2020,40(1):74-78(周晓燕,赵乘麟,黄乘顺,等.真空电阻炉退火温度对电子设备用Ti-51Ni记忆合金相变和形状行为的影响[J].真空科学与技术学报,2020,40(1):74-78(in Chinese))
[23]Liu M H.High-temperature electric heating process simulation[D].Qingdao:Ocean University of China,2008(刘美慧.高温电加热过程模拟分析[D].青岛:中国海洋大学,2008(in Chinese))
[24]Zhang S R.The application research of the graphite heating elements to the vacuum furnace[J].Industrial Heating,2012,41(5):66-68(张淑蓉.石墨加热元件在真空炉中的应用研究[J].工业加热,2012,41(5):66-68 (in Chinese))
[25]Mukul P,Salman K,Amaresh D,et al.Critical assessment of numerical algorithms for convective-radiative heat transfer in enclosures with different geometries[J].International Journal of Heat and Mass Transfer,2017,108:627-644
[26]Pei S L,Song B,Lu K,et al.Optimization simulation of temperature field in ALD pressure sintering furnace based on fluent[J].Cemented Carbides,2024,41(3):229-236(裴善领,宋波,鲁凯,等.基于Fluent的ALD型压力烧结炉温度场的优化模拟[J].硬质合金,2024,41(3):229-236 (in Chinese))
[27]Ma X,Du J,Su G,et al.Study on strengthening mechanism and high temperature mechanical properties of TiC-Fe-HEA cemented carbide[J].Materials Today Communications,2024,24(5):1234-1242
[28]Yao Q,Zhang L,Chen H,et al.Defect analysis during vacuum sintering of large Nd:YAG laser ceramics by FEM[J].Journal Of Materials Science-Materials in Electronics,2021,32(3):2925-2935
[29]Fu Z L,Yu X,Shang H L,et al.A new modelling method for superalloy heating in resistance furnace using FLU-ENT[J].International Journal of Heat and Mass Transfer,2019,128:679-687
[30]Huang L C.Blast furnace distributed temperature modeling method research based on mechanism and data hybrid driven[D].Zhejiang University,2013(黄龙诚.基于机理与数据混合驱动的高炉分布式炉温建模方法研究[D].浙江大学,2013 (in Chinese))
[31]Peng L T.Soft measurement of temperature in vacuum sintering furnace based on mechanism and data-driven hybrid modeling[D].Guangdong University of Technology,2020(彭刘涛.基于机理和数据驱动混合建模的真空烧结炉温度软测量研究[D].广东工业大学,2020 (in Chinese))
基本信息:
DOI:10.13922/j.cnki.cjvst.202412002
中图分类号:TK175
引用信息:
[1]王寒寒,景来兴,李建昌.加热体截面形状对真空烧结炉温度场的影响[J].真空科学与技术学报,2025,45(04):293-298.DOI:10.13922/j.cnki.cjvst.202412002.
基金信息:
山东省科技厅重点研发计划(重大科技创新工程)项目(2023CXGC010208)