nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 04, v.42 304-310
基于COMSOL的水中脉冲放电等离子体数值模拟研究
基金项目(Foundation): 福建省自然基金项目(2021J01109); 晋江市福大科教园区发展中心科研项目(2019-JJFDKY-38)
邮箱(Email): lansheng71@163.com;
DOI: 10.13922/j.cnki.cjvst.202112004
摘要:

本文基于COMSOL建立了水中脉冲放电二维轴对称流体模型,通过数值模拟求解载流子的对流与扩散方程计算了纳秒脉冲电压下水中放电产生等离子体的电子密度数值。为研究不不同放电条件对放电过程的影响,本文分析了脉冲电压幅值、脉冲电压上升沿长短与电极间隙距离改变时等离子体电子密度的变化情况。仿真结果表明:随着脉冲电压幅值增大,水中脉冲放电等离子体电子密度增大,且峰值出现时间较快、脉冲电压上升沿较短导致正离子流注发展速度加快、在一定范围内放电间隙变长会获得更高的等离子体电子密度。

Abstract:

In this paper,the two-dimensional axisymmetric fluid model of pulsed discharge in water is established based on COMSOL. The convection and diffusion equations of carriers are solved by numerical simulation,and the electron density of plasma produced by discharge in water at nanosecond pulsed voltage is calculated. In order to study the effects of different discharge conditions on the discharge process,the changes of plasma electron density with the changes of pulse voltage amplitude,pulse voltage rising edge and electrode gap distance are analyzed in this paper. The simulation results show that with the increase of pulse voltage amplitude,the electron density of pulsed discharge plasma in water increases,and the peak time is faster,the rising edge of pulse voltage is shorter,resulting in the acceleration of positive ion streamer development,and the longer discharge gap in a certain range,higher plasma electron density will be obtained.

参考文献

[1]刘毅,赵勇,任益佳,等.水中大电流脉冲放电电弧通道发展过程分析[J].电工技术学报,2021,36(16):3525-3534:2-3

[2]Ivanov M,Pavicic T,Kraljic K,et al.Effects of High Voltage Electrical Discharge Plasma on Olive Mill Wastewater Treatment[J].Sustainability,2021,13(3):1552-1552

[3]Laureano,Anzaldo,Cesar,et al.Plasma-Enhanced Modification of Polysaccharides for Wastewater Treatment:A Review[J].Carbohydrate Polymers,2021,252(Prepublish):117195

[4]Zhou R,Wang X,Zhou R,et al.Non-Thermal Plasma Enhances Performances of Biochar in Wastewater Treatment and Energy Storage Applications[J].Frontiers of Chemical Science and Engineering,2021(22):1-9

[5]李寿哲,谢士辉,吴悦,等.温室气体SF6和CF4的大气压微波等离子体降解技术[J].高电压技术,2021,47(08):3012-3015

[6]王志强,曹云霄,邢政伟,等.高压脉冲放电破碎菱镁矿石的实验研究[J].电工技术学报,2019,34(04):863-866

[7]刘毅,李志远,李显东,等.水中脉冲激波对模拟岩层破碎试验[J].电工技术学报,2016,31(24):71-75

[8]张辉,蔡志翔,陈安明,等.液相放电等离子体破岩室内实验与破岩机理[J].石油学报,2020,41(05):615-628

[9]张凯,王瑞雪,韩伟,等.等离子体重油加工技术研究进展[J].电工技术学报,2016,31(24):5-10

[10]Zhen Y,Bing Y,Xiao B,et al.Propagation Characteristics of Underwater Plasma Pulse Sound Source[J].Journal of Physics:Conference Series,2019,1237(2):022088(7pp)

[11]Lei K,Liu X,Ning L,et al.An Optimized Symmetric WENO Method-Based Numerical Simulation of Intense Sound Field Generated by Underwater Plasma Sound Source[J].Journal of Sensors,2018,2018(1):1-8

[12]孙冰,王波,朱小梅,等.微波液相放电等离子体的产生方法及形成机理[J].高电压技术,2014,40(04):1235-1241

[13]邢政伟,王志强,曹云霄,等.水中脉冲电弧放电等离子体通道直接冲击压力特性[J].高电压技术,2019,45(03):832-838

[14]聂云良,康忠健,王聪,等.水中脉冲放电电极的烧蚀特性[J].高电压技术,2021,47(07):2607-2614

[15]李元,李林波,温嘉烨,等.基于电致伸缩效应的水中纳秒脉冲放电起始机制[J].物理学报,2021,70(02):360-368

[16]Sainct F P,Urabe K,Pannier E,et al.Electron Number Density Measurements in Nanosecond Repetitively Pulsed Discharges in Water Vapor at Atmospheric Pressure[J].Plasma Sources Science and Technology,2020,29(2):025017-025017

[17]Inoue K,Takahashi S,Sakakibara N,et al.Spatiotemporal Optical Emission Spectroscopy to Estimate Electron Density and Temperature of Plasmas in Solution[J].Journal of Physics D:Applied Physics,2020,53(23):235202(7pp)

[18]Farouk T,Farouk B,Staack D,et al.Simulation of Dc Atmospheric Pressure Argon Micro Glow-Discharge[J].Plasma Sources Science&Technology,2006,15(4):676-688

[19]Zener C.A Theory of the Electrical Breakdown of Solid Dielectrics[J].Proceedings of the Royal Society of London,1934,145(855):523-529

[20]冯博文,王若愚,马雨彭雪,等.常压针-板放电等离子体密度演化[J].物理学报,2021,70(09):128-138

[21]孙昊,张帅,韩伟,等.纳秒脉冲火花放电高效转化甲烷的实验研究[J].电工技术学报,2019,34(04):880-888

[22]赵卫东,黄健泉,倪康,等.气体-液体两相放电低温等离子体的光谱诊断[J].真空科学与技术学报,2016,36(012):1407-1412

[23]范喆,孙昊,张帅,等.脉冲火花放电裂解正癸烷的放电稳定性与转化规律[J].中国电机工程学报,2021,41(22):7861-7871

[24]Krcma F,Kozakova Z,Mazankova V,et al.Characterization of Novel Pin-Hole Based Plasma Source for Generation of Discharge in Liquids Supplied by DC NonPulsing Voltage[J].Plasma Sources Science and Technology,2018,27(6):065001

[25]Gromov M,Leonova K,Geyter N D,et al.N2Oxidation Kinetics in a Ns-Pulsed Discharge above a Liquid Electrode[J].Plasma Sources Science and Technology,2021,30(6):065024(14pp)

基本信息:

DOI:10.13922/j.cnki.cjvst.202112004

中图分类号:O441.1;O53

引用信息:

[1]朱志豪,兰生,冯志远等.基于COMSOL的水中脉冲放电等离子体数值模拟研究[J].真空科学与技术学报,2022,42(04):304-310.DOI:10.13922/j.cnki.cjvst.202112004.

基金信息:

福建省自然基金项目(2021J01109); 晋江市福大科教园区发展中心科研项目(2019-JJFDKY-38)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文